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Abstract

In this paper we describe a fully integrated system for detecting, lo-
calizing, and tracking pedestrians from a moving vehicle. The system
can reliably detect upright pedestrians to a range of 40 m in lightly
cluttered urban environments. The system uses range data from stereo
vision to segment the scene into regions of interest, from which shape
features are extracted and used to classify pedestrians. The regions
are tracked using shape and appearance features. Tracking is used to
temporally filter classifications to improve performance and to esti-
mate the velocity of pedestrians for use in path planning. The end-to-
end system runs at 5 Hz on 1�024 � 768 imagery using a standard
2.4 GHz Intel Core 2 Quad processor, and has been integrated and
tested on multiple ground vehicles and environments. We show per-
formance on a diverse set of datasets with groundtruth in outdoor
environments with varying degrees of pedestrian density and clutter.
In highly cluttered urban environments, the detection rates are on a
par with state-of-the-art but significantly slower systems.

KEY WORDS—pedestrian detection, human detection,
stereo, tracking

1. Introduction

The ability of autonomous vehicles to detect and predict the
motion of pedestrians or personnel in their vicinity is critical
to ensure that the vehicles operate safely around people. Un-
manned ground vehicles (UGVs) being developed for military
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applications are large, heavy, and potentially fast-moving ve-
hicles. One of the highest-priority issues in the development
of these UGVs is that they do not injure people, either dur-
ing the research and development phase or in deployed oper-
ations. Vehicles must be able to detect people in urban and
cross-country environments, including flat, uneven, and multi-
level terrain, with widely varying degrees of clutter, occlusion,
and illumination (and ultimately for operating day or night, in
all weather, and in the presence of atmospheric obscurants).
To support high-speed driving, reliable detection to ranges of
approximately 100 m are likely to be necessary. The ability
to detect pedestrians from a moving vehicle in a cluttered,
dynamic urban environments is also applicable to automatic
driver-assistance systems or smaller autonomous robots navi-
gating in environments such as a sidewalk or marketplace.

In this paper we describe a fully integrated system capa-
ble of reliably detecting, localizing, and tracking upright (sta-
tionary, walking, or running) human adults at 5 Hz out to a
range of 40 m from a moving platform. Although not explic-
itly designed to handle partial occlusion, non-upright postures,
or children, the system performs reasonably well in these situ-
ations. Our approach uses imagery and dense range data from
stereo cameras for the detection, tracking, and velocity estima-
tion of pedestrians. The system runs on a standard 2.4 GHz In-
tel Core 2 Quad processor on 1�024�768 imagery. The ability
to process this high-resolution imagery enables the system to
achieve better performance at long range compared with other
state-of-the-art implementations. As the system segments and
classifies people based on stereo range data, it is largely in-
variant to the variability of pedestrians’ appearance (due to the
different types and styles of clothing) and scale. The system
also handles different viewpoints (frontal versus side views)
and poses (including articulations and walking) of pedestri-
ans, and is robust to objects being carried or worn by them.
Furthermore, the system makes no assumption of a ground-
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Fig. 1. Examples of test scenarios and the output of our pedestrian detection system (yellow boxes are detections with range and
track ID text and a green overlay of the segmented person� the cyan boxes are missed detections).

plane to detect or track people, and similarly makes no as-
sumption about the predictability of a person’s motion other
than a maximum velocity. When a vehicle motion estimate is
not available from other sensors (such as an inertial navigation
system (INS)), the system is also capable of visually estimat-
ing the motion of the vehicle, even in highly cluttered, dynamic
scenes. However, the system does not require motion of the ve-
hicle or people for detection.

The use of stereo vision is a key advantage of our approach.
Research to date has not achieved the detection ranges or relia-
bility needed in deployed systems to detect upright pedestrians
in flat, relatively uncluttered terrain, let alone in more com-
plex environments and with people in postures that are more
difficult to detect. Range data is essential to solve this problem.
Combining range data with high-resolution imagery may en-
able higher performance than range data alone because image
appearance can complement shape information in range data
and because cameras may offer higher angular resolution than
typical range sensors. The experiments shown in Section 4.1
indicate that pixels-on-target is the key factor in the correct
classification of people. This makes stereo vision a promising
approach for several reasons: image resolution is high and will
continue to increase, the physical size and power dissipation
of the cameras and computers will continue to decrease, and
stereo cameras provide range data and imagery that are auto-
matically spatially and temporally registered. Our results show
that a stereo-based approach is currently competitive with al-
ternative sensors and can be improved with higher-resolution

cameras. It can also be applied to infrared stereo imagery for
low-light or night-time operations.

The novelty of our system resides primarily in the method
of finding regions-of-interest from stereo data and the use of
a small set of simple, computationally efficient shape fea-
tures for classification, both of which are effective at ranges
significantly further than most other systems have addressed.
The classifier and tracker are both implementations of stan-
dard concepts. The system is also one of very few that has
been tested and analyzed on a very large and diverse corpus of
data.

The performance of the system is demonstrated on a variety
of ground-truthed datasets in various outdoor environments,
with different degrees of person density and clutter. An exam-
ple of these scenes is shown in Figure 1. The majority of new
datasets taken to evaluate the system consist of scenarios sim-
ulating the operation of a UGV traveling at moderate speed in
semi-urban terrain (paved roads with light clutter and people
walking along or into the road). In these scenarios, the sys-
tem is capable of initial detections of pedestrians up to 60 m,
and reliable detection and tracking of pedestrians up to 40 m.
In addition to testing on ground-truthed datasets, we describe
previous and upcoming live testing and evaluation of the fully
integrated system running onboard a UGV in these scenarios.
Finally, we present performance results of our system on re-
cently published datasets of crowded street scenes. Although
not specifically designed for highly cluttered urban environ-
ments, we show that results of our system are comparable
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to the state-of-the-art systems while able to run significantly
faster.

2. Related Work

There has been extensive research on pedestrian detection
from manned and unmanned ground vehicles using scanning
laser rangefinders (LIDAR) and monocular and stereo vision
in visible, near-infrared, and thermal infrared wavelengths.
Most such work assumes that the scene contains a dominant
ground plane that supports all of the pedestrians in upright pos-
tures. Maximum detection ranges tend to be 30 m or less. Rates
of missed detections and false alarms are not good enough to
be satisfactory in deployed systems. Most prior work on pedes-
trian detection has been done for applications to smart automo-
biles, robotic vehicles, or surveillance. This literature is very
large, so we only cover recent highlights and the main trends
here.

2.1. Smart Automobiles

Research on pedestrian detection for smart automobiles has
employed monocular vision (Shashua et al. 2004� Arndt et
al. 2007� Ma et al. 2007) stereo vision (Sotelo et al. 2006�
Bertozzi et al. 2007� Gavrila and Munder 2007� Liebe et al.
2007� Tomiuc et al. 2007), and LIDAR (Fuerstenberg et al.
2002). Vision-based methods have used visible (Shashua et al.
2004� Ma et al. 2007), near-infrared (Arndt et al. 2007), and
thermal imagery (Bertozzi et al. 2007). Most work in this area
has been strongly motivated by the requirement to be very low
cost in eventual production.

The monocular vision work reported by Shashua et al.
(2004) appears to be among the most mature in the automo-
tive arena. They detect regions of interest (ROIs) in each image
using a flat ground assumption to constrain the search, then ex-
tract gradient-based features from each ROI and classify and
track the ROIs over successive frames. The range to objects is
estimated by assuming that the bottom of each ROI is on the
ground plane. The system uses 640� 480 imagery with a 47�
field of view and is designed to detect pedestrians at 10 Hz
within 25 m of the camera. Single-frame classification perfor-
mance evaluated with many hours of imagery recorded in ur-
ban driving was given as a false positive rate per ROI of 8%
(“false positives per window”, FPPW) at a probability of de-
tection (Pd) of 93.5%. They process an average of 75 ROIs per
image, which results in the system producing approximately
six false alarms per image. Tracking is done over a minimum
of four frames before results are output� multi-frame analysis
reduces the false alarm rate by factors of between 103 and 106,
depending on where the pedestrians appear and if/how they are
moving. For the hardest case of stationary, out-of-path pedes-
trians, they reported a system-level Pd of 85% with 1.7 false

positives per minute. Performance evaluation did not include
partially occluded pedestrians.

Methods using stereo vision have a similar architecture,
but use the range data to aid in detecting ROIs and to esti-
mate the range to objects. The stereo vision systems gener-
ally output sparse depth maps with range to edge features� the
best described systems use 320 � 240 imagery (Sotelo et al.
2006� Gavrila and Munder 2007) and also aim for a maximum
range of 25 m. Details of the ROI detection, feature extrac-
tion, classification, and tracking algorithms vary by author. A
key feature they have in common is that, although the range
data from stereo is used in detecting ROIs, feature extraction
and classification is done with image data, not range data.
Gavrila and Munder (2007) reports frame-level performance
at a Pd of 61% with 17.3 false positives per minute for pedes-
trians within �4 m to each side of the vehicle path. This false
positive rate is equivalent to a precision of 52.6%� precision
is the fraction of reported detections that are really pedestri-
ans. For trajectory-level performance, the false positive rate
drops to 3.5 per minute. Sotelo et al. (2006) reports a Pd of
93.2% with a precision of 92.6%� since this is not evaluated
on the same data set, it is unclear what explains the perfor-
mance difference between these two systems. These two sys-
tems process imagery at 6–20 Hz with one 2.4 GHz Pentium 4
PC. Liebe’s system (Liebe et al. 2007) also uses 320 � 240
imagery, but runs much more slowly. Their performance eval-
uation included pedestrians up to 50 m away with up to 70%
occlusion� at a Pd of 42%, they experience 1.7 false alarms
per frame. Presumably this lower performance is due at least
in part to the greater maximum range and partial occlusions
in the test data. Extensions of this work include that of Ess et
al. (2007, 2008), which uses 640� 480 imagery and reports a
Pd of 40% to 55% at one false positive per frame on cluttered
urban sidewalks. We specifically compare our system directly
to theirs (in Section 4.2) as they have published their datasets.

Near-infrared and thermal infrared imagery have been em-
ployed to address operation at night (Arndt et al. 2007�
Bertozzi et al. 2007). The algorithm architectures are analo-
gous to those above. Work with LIDAR for the automotive
domain includes use of the four-beam scanner by IBEO (Fuer-
stenberg et al. 2002), which now has a range exceeding 100 m.
Claims are made for very good pedestrian detection and false
alarm rates, but the systems and experiments are described in
less detail than other related work, making performance hard
to compare.

2.2. Robotic Vehicles

Most work on pedestrian detection for robotic vehicles in out-
door applications is being done under the Army Research Lab
(ARL) Robotics Collaborative Technology Alliance (RCTA)
program. This work includes methods that perform range sens-
ing with two-dimensional LIDAR, three-dimensional LIDAR,



4 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / 2009

stereo vision, and/or structure from motion and do image sens-
ing with visible and/or thermal infrared cameras. At a high
level, algorithm architectures are analogous to the systems
for the automotive domain, involving ROI detection, clas-
sification, and tracking, although the order and details of these
steps differ. Some approaches (Navarro-Serment et al. 2008�
Thornton et al. 2008) detect which objects are moving be-
fore performing classification. As a group, there is more em-
phasis in this domain on classification based on the three-
dimensional shape of the objects as perceived by LIDAR or
stereo vision than there is in the automotive domain. The fea-
ture extraction and classification algorithms tend to be simpler
than those used in either the automotive or video surveillance
domains.

Thornton et al. (2008) uses a LIDAR that scans 180� hor-
izontally and has many beams vertically to provide a three-
dimensional range image� sensor details are proprietary, but
the functionality is similar to the commercially available LI-
DAR from Velodyne. Above-ground objects are segmented
into distinct point clouds, which are tracked to estimate their
velocity. A “strength-of-detection” function combines simple
features of the density, shape, velocity, and temporal stability
of the point cloud to provide a confidence measure that the
point cloud is a pedestrian. Preliminary work was also done
with long-wave thermal infrared imagery to detect pedestri-
ans beyond the range of the LIDAR and in non-upright pos-
tures that are hard to recognize with LIDAR data. Navarro-
Serment et al. (2008) employs a similar sequence of operations
with two-dimensional LIDAR scans in a plane parallel to the
ground.

Stereo vision-based approaches have been explored in the
RCTA program by Howard et al. (2007) and Bajracharya et
al. (2008) at the Jet Propulsion Laboratory (JPL), in an ear-
lier version of the work reported here, and by Abd-Almageed
et al. (2007) at the University of Maryland (UMd). Howard
processed 1�024�768 stereo imagery into 512�384 range im-
ages (60� field of view), transformed the range data into two-
dimensional maps in a horizontal reference frame, segmented
upright objects in those maps, and performed classification on
the resulting three-dimensional point clouds for each object.
This was based on a dense, area correlation-based stereo vi-
sion algorithm that outputs range estimates for most pixels of
the image� this is distinct from the main trend in automotive
applications, which use sparse range data at the edges. The
point clouds were also used to compute rectangular ROIs in
image space for input to an image-based classifier. The sys-
tem ran at 3.75 Hz. Bajracharya et al. (2008) extended this
approach by improving detection of candidate objects with the
range data, improving the feature extraction and shape-based
classification stages of the system, and modifying the system
to run on 1�024�768 imagery at the same rate as its predeces-
sor. Abd-Almageed et al. (2007) used image ROIs computed
from the JPL stereo vision-based range data as input to a clas-
sifier based on Adaboost.

The RCTA program conducts “Safe Operations” (SafeOps)
field experiments in the fall of each year to quantitatively mea-
sure the performance of pedestrian detection systems. All of
the systems discussed above were evaluated in the FY2007
experiment, which was on a flat road about 250 m long with
10 moving pedestrians, four stationary mannequins, and as-
sorted moving and stationary clutter objects� overall the scene
was relatively uncluttered. For the FY2007 experiment, the
course was run 32 times to generate performance statistics
for LIDAR and stereo vision-based systems� results are dis-
cussed by Bodt (2008). The median distance to first detec-
tion of people and mannequins varied from about 25 to 45 m
for LIDAR-based systems and 25 to 32 m for stereo vision-
based systems. Detection rates were evaluated as a function
of how many frames each target was detected in on a given
run, which we will call “persistence”. For a persistence of four
frames, algorithms using three-dimensional LIDAR data had
detection rates of 95–100% for moving people and stationary
mannequins combined. The detection rates for stereo vision-
based algorithms are ambiguous, because the evaluation may
not (yet) have properly scored targets that were not in the field
of view of the cameras. With that caveat, the four frame persis-
tence for stereo vision was at least 57%. Classification errors
on clutter objects were scored similarly� for four frame persis-
tence, 10–20% of clutter objects were misclassified as human
for the algorithms using three-dimensional LIDAR or stereo
vision (precision of 80–90%). Pickup trucks and human-sized
crates, in particular, caused classification errors. The reasons
for this have not yet been analyzed in depth, but it may be that
for these sensors the range data on pickup trucks breaks up
into human-sized blobs. Results available to date from the ex-
periment analysis do not allow direct comparison of the false
alarm rate from the SafeOps experiment to false alarm rates
published in the automotive domain� moreover, the types of
scenes in the respective data sets differ enough that such a
comparison would be inconclusive.

2.3. Surveillance

Work on pedestrian detection in the surveillance arena largely
divides into work with image sequences from stationary cam-
eras, where background subtraction and/or image differenc-
ing is used to detect moving objects (Beymer and Konolige
1999� Viola et al. 2003� Zhao et al. 2008), and work that ap-
plies trained pattern classifiers to individual images (Dalal and
Triggs 2005� Sabzmeydani and Mori 2007� Seeman et al. 2007�
Tuzel et al. 2007� Wu and Nevatia 2007). The former group is
less relevant here, because background subtraction and tempo-
ral image differencing are more difficult to use from moving
cameras. Stereo data has been used in this area to segment,
classify, and track people (Beymer and Konolige 1999), how-
ever the methods still rely on background modeling (Eveland
et al. 1998) and so do not handle camera translations, and have
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been limited in range (to less than 20 m). The latter group
uses a variety of feature extraction and classification meth-
ods to achieve better Pd and FPPW rates than single-frame
results reported in the automotive pedestrian detection liter-
ature� however, the results are not directly comparable for a
number of reasons. Since real-time performance on embedded
computers is not required, computational requirements gener-
ally are higher or not stated. The testing protocol often used is
not a good match to driving scenarios, since it either uses im-
age databases where positive examples are already centered
in image chips or performs exhaustive search over position
and scale of ROIs in test imagery. Finally, not having a track-
ing module that helps detection and false alarm performance
leads to different algorithm design and computational trade-
offs. For these reasons we do not elaborate on these methods
here� nevertheless, this research does offer the potential to im-
prove single-frame performance of classifiers used in automo-
tive and robotic vehicle domains.

3. System Description

Our pedestrian detection system is primarily designed to en-
able autonomous vehicles to safely navigate when people are
present. Consequently, the system must be able to detect a per-
son with enough time for a planner to generate a plan to avoid
the person and the vehicle to execute this plan. Furthermore,
it must be able to predict the person’s motion and maintain a
false positive rate that prevents the vehicle from unnecessar-
ily avoiding objects. The detection system’s requirements are
highly dependent on the overall system configuration and re-
quirements, however we are specifically targeting a car-sized
vehicle driving at 30 km h�1 in lightly cluttered terrain, and
ultimately desire to drive at 50 km h�1 in highly cluttered ter-
rain.

Our system consists of the following modules, which are
each described in more detail in the balance of this section.

� Stereo vision. The stereo vision module takes synchro-
nized images from a pair of cameras and computes a
dense range image.

� Visual odometry. The visual odometry module takes
two sequential pairs of stereo images and computes the
frame-to-frame camera motion. In practice, if a good
pose estimate is available from other vehicle sensors
(such as an INS), this step is skipped.

� ROI detection. The ROI detection module projects
stereo data into a polar-perspective map (PPM) and then
segments the map to produce clusters of pixels cor-
responding to upright objects. These clusters are then
filtered for human-sized objects based on their three-
dimensional shape statistics.

� Classification. The classification module computes geo-
metric features of the 3D point cloud of each ROI and
classifies the object, resulting in a probability of being
human.

� Tracking. The tracking module associates ROIs in se-
quential frames, accounting for vehicle motion, and es-
timates the velocity of the detected objects. The proba-
bilities for each tracked object are filtered over time to
produce a final detection result.

The system architecture allows the possibility of using ap-
pearance and motion features to improve the classification of
people, but we currently do not make use of these features. We
intend to use them in the future to improve the performance of
the system, particularly on partially occluded or non-upright
people. However, one advantage of only using shape infor-
mation is that the algorithm could, in principle, be applied to
range data from other sensors.

3.1. Stereo Vision

The first step in our system is to compute dense range data
from stereo images. We use a multi-processor version of the
algorithm described by Goldberg et al. (2002) previously used
on the NASA Mars Exploration Rovers and in the DARPA Per-
ceptOR program. On a 2.4 GHz Intel Core 2 Quad processor,
the algorithm can process 1�024 � 768 imagery at 10 frames
per second. The algorithm has also been ported to a filed-
programmable gate array (FPGA), which can process 1�024�
768 imagery at 15 frames per second. When run in software,
the stereo processing dominates the computation time of the
overall system and is the only component of the system that
takes advantage of the multiple cores of the CPU.

3.2. Visual Odometry

When the pose of the vehicle is not available from an INS,
accurate knowledge of frame-to-frame camera motion is pro-
duced by visual pose estimation. We use the visual odometry
algorithm described by Howard (2008) that tracks point fea-
tures in imagery and uses the dense range data to provide the
range to each feature. Briefly, the algorithm detects features in
each frame with a corner detector, matches features between
frames using their sum-of-absolute-differences over local win-
dows, finds the largest set of self-consistent matches (inliers),
and then finds the frame-to-frame motion that minimizes the
reprojection error for features in the inlier set. The algorithm
exploits intermediate steps in the stereo processing pipeline to
optimize execution and is able to process 1�024� 768 images
in 10 to 20 ms per frame. In static environments, typical accu-
racy is better than 1 m over 400 m of travel.
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Fig. 2. (a) An example image from an urban sequence (Ess et al. 2007), with feature tracks from visual odometry. (b) Frame-to-
frame translations computed by visual odometry, in centimeters� the x- and z-axes correspond to lateral and forward motion of
the camera, respectively

This algorithm also performs reliably in cluttered, dynamic
environments (such as urban sidewalks). For example, Fig-
ure 2(a) shows an image from one of the urban sequences de-
scribed in Ess et al. (2007). While there is no ground truth
for this sequence, we know from visual inspection that the
camera motion is smooth and approximately linear� we can
therefore assess the reliability of visual odometry by looking at
the estimated frame-to-frame change in pose. The scatter plot
in Figure 2(b) shows the camera translations in forward and
lateral directions. Note that there are no large jumps or kine-
matically infeasible lateral translations, indicating that visual
odometry has correctly extracted the camera motion while ig-
noring the independent movers. Visual odometry cannot work
for all scenes, however� if the environment is heavily occluded
by movers additional sensors or kinematic constraints must be
applied to disambiguate the multiple motions present in the
scene.

3.3. ROI Detection

Detecting ROI areas from the stereo data serves as a focus-
of-attention mechanism to reduce the runtime of subsequent
classifiers and segments foreground pixels from background
pixels in a region. This allows a shape-based classifier to be
run on the 3D points that make up a specific object, rather
than sliding a window over the image and explicitly perform-
ing foreground/background segmentation in each window.

The steps of the ROI detection algorithm are illustrated in
Figure 3. Figure 3(a) shows a simple test scene with two people
at 5 and 30 m distances from the cameras. Figure 3(b) shows a

depth map produced by the dense stereo matching algorithm�
color codes represent the distance, with red closest, blue fur-
thest, and dark red representing pixels with no range data. The
range data is projected into a two-dimensional grid map, which
is then segmented based on map cell statistics. In order to cap-
ture the variable resolution and preserve the coherency of the
stereo range data, the map is represented as a PPM. Unlike a
traditional Cartesian map, which is divided into cells of fixed
size in Cartesian �x� y� space, the PPM is divided into cells
with a fixed angular resolution but variable range resolution in
polar �r� �� space. The range resolution (r-axis, up each col-
umn in Figure 3(c)) corresponds to stereo disparity, propor-
tional to inverse range, and consequently accounts for stereo
range error by accumulating all of the points that lie within the
expected stereo range error. Each row in the PPM corresponds
to a fixed interval of stereo disparity� each column corresponds
to one (or more) columns of the depth map. The stereo range
data is transformed into a gravity-leveled frame and then pro-
jected into the PPM, which accumulates the number of points
projected into each cell. The map is then smoothed with an
averaging filter with an adaptive bandwidth in polar space cor-
responding to a fixed bandwidth in Cartesian space. For com-
putational efficiency the filter is implemented by first comput-
ing the integral image of the map. Figure 3(c) shows the PPM
for the depth map in Figure 3(b) after smoothing. The diago-
nal row of blobs on the left corresponds to the row of trees.
The person at 5 m is the distinct blob at the bottom of the
map. About halfway up the image, the blob to the right of the
trees is from the overhanging branch visible at the top of the
image in Figure 3(a). Farther up the image, another blob on
the right side of the trees corresponds to the person at 30 m.
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Fig. 3. An example of the stereo-based segmentation for region-of-interest detection: (a) the left image of a stereo pair� (b) the
resulting depth map� (c) the PPM of point counts smoothed with an averaging filter� (d) a close up of the map with segmented
regions overlaid� and (e) the segmented regions, with examples of the foreground/background separation.

Overhangs are currently not removed before projecting data
into the PPM, however segmented blobs are post-processed to
remove outliers. The additional clutter in the PPM caused by
overhangs is generally insignificant in the semi-urban datasets
used, but can be problematic in urban environments, result-

ing in missed detections. This will be a subject of future
work.

After smoothing, the map gradient is used to find all of the
peaks in the map. The peaks are grown down to valleys (an
inflection point in the gradient), resulting in a segmentation of
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Fig. 4. Examples of ROI detection from a semi-urban sequence. The first column shows a thumbnail of the image� the second
shows the depth map� the third column shows the segmented regions� and the fourth column shows the foreground/background
segmentation for specific regions. The top row shows an easily separable case with people at 30 m� the middle row shows a case
of partial occlusion, with a person at 30 m� and the bottom row shows a person at 45 m who is difficult to distinguish visually.

the map. As the minimum expected size of the objects being
detecting is known, segmented blobs whose peaks fall within
half of this size are then merged together. Figure 3(d) gives a
close-up of the PPM around the person at 30 m� although the
map blob corresponding to the person is not completely dis-
joint from the blob for the nearest tree, it is still segmented as
a separate ROI. Figure 3(e) illustrates the segmentation results
in image space.

Figure 4 shows several more examples of segmentation, in-
cluding more challenging cases. The top row shows the seg-
mentation of two people at approximately 30 m, where the
people are easily distinguishable in the stereo data. Stereo
matching causes “foreground fattening” of the regions contain-
ing people, but the effect tends to be consistent and so can be
accounted for during classification. Alternatively, a more so-
phisticated stereo algorithm could be applied in each region
to reduce this effect, but we have not yet implemented this.
The middle rows shows the segmentation of a person at 25 m
partially occluding a mannequin several meters behind them.
As the mannequin falls into a cell well behind the person, the
mannequin is segmented correctly, but includes a portion of
the ground. The bottom row shows a person at 45 m walking
in front of a vehicle with a similar color. In this case, the person
is difficult to distinguish from the vehicle visually, but can still
be segmented correctly because of the range data on the person
at other locations on his body. Note, however, that the vehicle
is over-segmented into many separate regions. This is due to

the patchy stereo of the flat vehicle, resulting in many regions
that are then smoothed and merged, resulting in human-sized
regions. Overall, on this semi-urban data, our approach rarely
fails to correctly segment a person closer than 60 m. Even
on the urban datasets, the segmentation rarely fails to detect
people when the stereo coverage is sufficient. The problems
with the segmentation tend to be with over-segmenting non-
human objects into human-sized objects or merging multiple
people into a single region. The latter could be addressed by
improving the post-processing of the regions, or by selecting
sub-regions to provide to the classifier. The former is more
difficult to address, but could potentially be alleviated by us-
ing multiply sized and oriented filters, prefiltering the range
data before projecting it into the PPM, or improving the stereo
algorithm to provide more range data in low-texture areas of
the image.

3.4. Classification

Geometric features of each segmented three-dimensional point
cloud are used to classify them as human or not human
based on shape. For efficiency, the regions are first prefiltered,
and shape-based features are then computed on the remain-
ing regions. The regions are classified using a discriminative
quadratic classifier based on a logistic regression model.
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Prefiltering of regions based on shape moments is used to
reduce the number of regions and create more balanced train-
ing data. The prefilter uses a fixed threshold on the width,
height, and depth variance of each segmented region. This
threshold is simply selected as the 3� values obtained from
the training data. After prefiltering, the features used for clas-
sification are computed for each region’s point cloud.

Our features include the fixed-frame shape moments (vari-
ances of point clouds in a fixed frame), rotationally invariant
shape moments (the eigenvalues of the point cloud’s scatter
matrix), and “soft-counts” of various width, height, depth, and
volume constraints. The logarithmic and empirical logit trans-
forms of these moments and counts are used to improve the
normality of the feature distribution (resulting in “soft” counts,
as opposed to raw counts). The features were selected based on
our prior experience and similar features shown to be effective
in other work (Howard et al. 2007� Thornton et al. 2008).

To compute the features, we start by centering the point
cloud about the x-axis by its mean value and setting the mini-
mum depth z and height y to zero. The first feature is defined
by the logarithm of the second-order moment of the height:

f1 � � log�� 2
y�� (1)

We use the negative sign for the logs in order to have feature
values be more positive for the (smaller) human blobs. We also
off-center the y moment by redefining it as � 2

y � E�y � 0�5�2

where E denotes the expectation operator. The particular off-
set value (of 0.5 m) was experimentally found to enhance per-
formance and more generally could be automatically learned
from data. Finally, we center the distribution of all features by
subtracting a constant shift value so the “cross-over” value of
each feature is near zero. Such linear shifts in the log-domain
correspond to (arbitrary) scale factors in the original coordi-
nates and are omitted in the equations presented.

The “soft-count” features are defined by the number of
points that fall inside certain preset coordinate bounds (or vol-
umes). Such count-based features ignore “true shape” and fo-
cus instead on the object’s size or extent. Unlike moment-
based features, count-based features are more tolerant of out-
lier noise and some artifacts of stereo processing. Naturally
there are strong correlations between these two different sets
of features. However, this correlation or redundancy can be
quite helpful for modeling purposes. For the total number of
points n in a blob point cloud, we define nx � #�	x 	 � 1�
as the number (subset) of three-dimensional points whose x
value is less than 1 m (in absolute value), ny0 � #�y � 2� and
ny1 � #�y 	 1� as the number of points whose height value is
less than 2 m and greater than 1 m, and nz0 � #�z � 4� and
nz1 � #�z � 3�5� as the number of points with a depth value
less than 4 and 3.5 m, respectively. We also define n
 to be the
number of three-dimensional points that satisfy all three width,
height, and depth constraints simultaneously (i.e. the number
of points that fall within the prescribed rectangular volume of

size 1 m� 2 m� 4 m). Although these constraints were se-
lected empirically, the process could easily be automated. In
order to normalize the data as well as account for uncertainty
due to the sample size (n), we use a logit transform with an
empirical prior count c:

f2 � log
nx 
 cx

n � nx 
 cx
�

f3 � log
ny0 
 cy0

n � ny0 
 cy0

�

f4 � log
nz0 
 cz0

n � nz0 
 cz0

�

f5 � log
n
 
 c


n � n
 
 c

�

f6 � log
ny1 
 cy1

n � ny1 
 cy1

�

f7 � log
nz1 
 cz1

n � nz1 
 cz1

� (2)

The rotationally invariant features are the logarithms of the
eigenvalues of the point cloud’s covariance (inertia) matrix,
where (�x � �y� �z) correspond to the major, intermediate, and
minor axes, respectively:

f8 � � log��x ��

f9 � � log��y��

f10 � � log��z�� (3)

We note that f8 would be redundant with f1 if all of the
blobs were oriented correctly (upright and “facing” down-
range). However, this is often not the case due to artifacts in
stereo processing or slight errors in roll/pitch estimates, result-
ing in point clouds that are tilted and/or slanted. We once again
use the negative sign convention (so human feature values are
more positive) and likewise use appropriate additive shifts to
center the distributions even though these values are not shown
in the equations.

Analysis of the shape features indicated that a linear clas-
sifier (with a linear decision boundary) was too simple to
always work effectively. However, a more complex decision
boundary can be achieved while still using a linear classifier
(which is desirable for its computational efficiency and robust-
ness) by expanding the feature set to use higher-order terms.
Specifically, a quadratic decision boundary is modeled using
the augmented feature set:

x � [1 � fi � � fi f j �i� j � f 2
i �]T� (4)

Using this feature vector, we use Bayesian parameter es-
timation for a discriminative classifier based on a standard
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generalized linear model for binary outcomes (human versus
non-human). For this probabilistic model, the logit of the class
membership probability p�y � 
1� is modeled by the lin-
ear term wTx, where w is the vector of feature weights (our
classifier parameters). Equivalently, this means using a lo-
gistic sigmoid function on wTx to model output probabilities
p 
 [0� 1]:

p�yi � 
1 	 xi �w� � logit�1�wTxi � � 1

1
 e�wTxi
� (5)

This is simply the probability for a Bernoulli model (of being
human) given an input feature vector xi . Given that our y labels
are �1 and that p�y � 
1� � 1� p�y � �1� and exploiting
the symmetry of the logistic function itself, the full likelihood
for the entire training set can be written in this compact form

p�y 	 X�w� �
n�

i�1

�1
 e�yi wTxi ��1� (6)

where y is the vector of output labels and the matrix X collects
all training feature vectors xi in its columns.

All that remains is to posit a prior distribution on our pa-
rameters, and for convenience we use a zero-mean Gaussian
p�w� � � �0� ��. If this was the first training set we encoun-
tered, we could use a non-informative (diffuse) prior by setting
� very large (and diagonal). More importantly, we can use
the posterior distribution inferred from previous training sets
as the prior distribution on new sets. The Bayesian derivation
is completed by examining the posterior distribution which is
proportional to the joint distribution

p�w 	 X� y� � p�y 	 X�w�p�w�� (7)

More conveniently, we form the log-posterior


�w� � log p�w 	 X� y� � �1

2
wT��1w

�
n�

i�1

log�1
 e�yi wTxi �
 constant� (8)

which for this model (using a log-quadratic prior) is conve-
niently log-concave. This means that the posterior distribution
has a single global maximum which is easy to find by iterative
non-linear optimization methods. The technique of choice for
this class of models is the iteratively reweighted least squares
(IRLS) algorithm, which uses Newton–Raphson updates to
solve a set n coupled non-linear equations for �
�w� � 0.
Having reached the mode �w this optimization procedure also
yields the local curvature or Hessian: H � �2
�w�. Al-
though the log-posterior is unimodal, it is generally skewed
(non-Gaussian) but if n is large, then a Gaussian approxima-
tion becomes increasingly accurate. Therefore, it is often ade-
quate to model the w posterior by a Gaussian with mean �w and

covariance matrix defined by the (negative) inverse Hessian,
V � �H�1

p�w 	 X� y� � � � �w�V�� (9)

We note that because we have an analytic closed-form expres-
sion for the (unnormalized) joint distribution of �w� y� it is not
difficult to stochastically sample from the exact posterior of
w using standard Markov chain Monte Carlo (MCMC) meth-
ods (e.g. the Metropolis–Hastings algorithm or importance re-
sampling, etc.). When there are large number of training data,
the simple Gaussian modal approximation in Equation (9) is
usually sufficient for posterior predictive sampling (where it is
trivially easy to sample from a multivariate Gaussian).

The expected posterior probability of being human for a
new feature vector x� is then given by marginalizing over the
uncertainty in the w posterior

Ep�y� � 
1 	 x��X� y� �
�

1
1
e�wTx� p�w 	 X� y� dw� (10)

which can be reduced to a simple one-dimensional integral by
working with the posterior distribution of the scalar random
variable wTx�. If instead of the Gaussian approximation to the
posterior, we wish to use the exact posterior to evaluate this
integral, stochastic methods using MCMC can be used. Nev-
ertheless, it is convenient to output a single maximum a pos-
teriori (MAP) estimate of the output probability by using the
mode �w

��� � 1

1
 e� �wTx�
� (11)

This approximate predictive probability becomes more accu-
rate as the number of observations n approaches infinity (since
the posterior then approaches a � function centered at �w). We
use the MAP estimate in all of the results presented in this pa-
per.

3.5. Tracking

Tracking ROIs in the scene is used to both reduce incorrect
detections and estimate the velocity of the detected objects.
By associating ROIs across multiple frames, the single frame
classifications can be aggregated to eliminate false positives.
Similarly, using the positions of a tracked object from stereo
and the motion of the vehicle, estimated by visual odometry or
provided by an INS, the velocity of the object can be computed
and extrapolated to provide a predicted motion to a path plan-
ner. The tracking algorithm is designed to be extremely com-
putationally efficient and makes very few assumptions about
the motions of objects.

Tracking of ROIs is actually implemented as data associa-
tion, rather than explicit tracking. The ROIs extracted in a new
frame are matched to existing nearby tracks by computing a
cost based on each ROI’s segmented foreground appearance
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and then solving a one-to-one assignment problem. For com-
putational efficiency and simplicity, the cost between a ROI
and a track is computed by comparing the new ROI to the last
ROI in the track. Only ROIs within a fixed distance are con-
sidered� the distance is computed by using an assumed max-
imum velocity of 2 m s�1 in any direction for each object.
The cost between ROIs is then computed as the Bhattacharyya
distance of a color (RGB) histogram between each ROI. The
resulting linear assignment problem could be solved optimally
by the Hungarian method or sub-optimally with a greedy al-
gorithm, but these methods are relatively expensive (O�n3�
and O�n2 log n�, respectively). Instead, we simply require as-
signments to be co-occurring minima (O�n2�). If a ROI does
not match an existing track, a new track is started. Tracks that
are not matched for a fixed number of frames are eliminated.
To reduce the number of ROIs tracked, only ROIs that pass
the pre-filter based on size variances (Section 3.4) are consid-
ered. This also increases the stability of the ROIs by elimi-
nating small, similarly colored regions nearby a larger region.
Although we have experimented with many-to-one and one-to-
many matching, we found one-to-one matching to be sufficient
and simpler. We have not yet invested in more sophisticated
methods, such as multiple hypothesis tracking, joint proba-
bilistic data association filters, or kernel-based tracking, as the
need has not justified the increased computational cost. An ex-
ample of tracked pedestrians is shown in Figure 5. Figure 5(c)
shows the individual tracks for the scene shown in Figure 5(b)
(the multiple overlapping tracks are due to the fact that the
vehicle, whose path is shown as the red line, doubled-backed
across the intersection).

Analyzing the single frame output of our classifier for each
track, we observed that many false positives were only present
in a single frame or in multiple non-consecutive frames. Con-
versely, true positives (the pedestrians) were detected consis-
tently over many frames, and when detections were missed it
was typically for only one or two frames before the person
was detected again. To eliminate the spikes in classification
scores that led to false positives, while still maintaining detec-
tions on true positives where the classification score dropped
for a small number of frames, we considered several methods
of filtering the scores. These included computing the mean,
median, maximum, and minimum score over a varying number
of frames, and waiting a varying number of frames required to
make a classification decision. In our experiments, two differ-
ent combinations of the filtering method and minimum num-
ber of frames were found to work well. The first combination
was to compute the median of three consecutive scores and re-
quiring three consecutive frames of detection before making a
classification decision. The second combination was to com-
pute the minimum of four consecutive scores and require two
consecutive frames of detection before making a classification
decision. We ultimately fielded the first combination, but tem-
poral filtering can also be disabled depending on the classifier
operating point.

Trade-offs in temporally filtering the classification scores
include the latency it introduces when declaring detections and
the quality of tracking (length of tracks). Although temporal
filtering can eliminate spurious detections, it also reduces the
true positives. This results in the reduction of the detection rate
at high false alarm per frame (FAPF) rates, but generally in-
creases the detection rates at low FAPF rates, as shown in Fig-
ure 5(a).

The velocity of tracks is estimated by fitting a linear mo-
tion model over a sliding window of detections. We origi-
nally utilized independent Kalman filters to compute the ex-
pected position and velocity of each track, but found that due
to the periodic motion of a person’s gait, it did not provide sig-
nificantly better results. Comparing the frame-to-frame posi-
tion of a walking person tends to result in an oscillating veloc-
ity, but fitting a linear model over several frames smooths the
motion. We estimate the position and velocity uncertainty by
combining the expected stereo error with the model fit. An ex-
ample of the computed velocity vectors and variances is shown
in Figure 5(d) for the scene in Figure 5(b).

4. Experimental Results

The end-to-end system has been tested on datasets with hand-
labeled ground-truth and integrated onboard a vehicle for live
testing. The primary datasets were collected from the vehi-
cle on which the system was integrated in semi-urban, lightly
cluttered scenarios. Although relatively simple compared with
what a deployed system might encounter, they are representa-
tive of the RCTA SafeOps field experiments used to evaluate
the system. The results on the datasets show that our system
can achieve initial detections at a range of 60 m, with detec-
tions reliable enough for autonomous navigation out to 40 m.
To demonstrate that the system’s performance is competitive
with state-of-the-art systems in highly cluttered, urban scenar-
ios, we also make use of datasets published by Ess et al. (2007,
2008). We show that we can achieve performance similar to
Ess et al. on these datasets while running at 10 Hz.

4.1. Semi-urban Datasets

The primary datasets used to evaluate the system use input
imagery from a three CCD color stereo camera pair with
1�024� 768 pixels, a 50 cm baseline, a field of view approxi-
mately 60� wide, and with frame rates between 3.5 and 10 Hz.
The cameras were either mounted on the roof of a sports util-
ity vehicle (SUV) at a height of approximately 2 m above the
ground, and pointed down by approximately 5�, or on the pan–
tilt head of an unmanned vehicle at a height of approximate
2 m above the ground, and pointed down by 20�. The scenar-
ios include the vehicle driving down a road at speeds varying
from 15 to 30 km h�1, with stationary mannequins and people
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Fig. 5. (a) The performance for a single semi-urban sequence illustrating how tracking can be beneficial at low FAPF, but reduces
the detection rate at high FAPF by introducing a latency. (b) An example detection from the scene (yellow boxes are detections,
with a green overlay of the segmented person� the cyan boxes are missed detections). (c) The individual tracks detected during
the run, with the vehicle path shown as the red line� note that the vehicle double-backed across the intersection, resulting in
overlapping tracks. (d) The 3D point cloud of a region with estimated velocity vectors (cyan lines) and uncertainties (cyan
ellipses) for the detections in (b).

standing, walking, and running along the side of and across
the road in varying directions. The scene also contains station-
ary and moving cars, trucks, and trailers, along with stationary

crates, cones, barrels, sticks, and other similar objects. In many
cases, the pedestrians experience a period of partial to full oc-
clusion by these objects or each other. Several variations of the
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scenario also include one or two people walking in front of the
vehicle, weaving between each other and occasionally going
out of the field of view.

The imagery was manually ground-truthed by annotating
a bounding box around each person in the left image of each
frame, to a range of approximately 100 m. In total, our cor-
pus includes approximately 6,000 annotated frames with ap-
proximately 10,000 annotated people, although we restrict our
analysis to specific datasets which are representative of oper-
ational scenarios. Although people are annotated regardless of
their posture or degree of occlusion, we only consider peo-
ple who are in an upright posture with less than 50% occlu-
sion for our analysis. We use the measure of the area of the
intersection over the area of the union of the annotated and
detected bounding boxes to declare a correct detection. How-
ever, for these datasets, we found that relaxing the common
evaluation criteria of 50% intersection-over-union to 25% pro-
duced more meaningful results. This is because we are inter-
ested in detection at relatively long range where the segmen-
tation error is dominated by the foreground fattening effect of
stereo matching. As the scenes are relatively uncluttered, us-
ing a looser matching criteria still remains representative of
actual detections. In order to present results that are meaning-
ful when developing a complete, autonomous system capable
of safe navigation, we present our results as the Pd, defined as
the number of detections divided by the true number of people
in the scene, versus the FAPF, defined as the number of incor-
rect detections divided by the number of frames in the dataset.
We have observed that pixels-on-target are a dominating factor
to classification performance, so we also illustrate the perfor-
mance as a function of range, restricting the detections and
annotations to several maximum ranges. This provides an in-
dication of how the algorithm will perform with different res-
olution imagery or different camera or sensor configurations.

To demonstrate the effectiveness of our feature set and clas-
sifier, we first present results on a cross-validation test over
many of our datasets. Figure 6(a) shows the performance of
the system as an average of 1,000 trials on a dataset com-
bined from many different scenarios, totaling 4,396 frames
with 3,409 annotated people. From these sequences, 21,824
ROIs were extracted and each curve was generated by ran-
domly selecting 80% of these ROIs for training and using the
remaining 20% for testing. The resulting number of effective
frames in each test sequence is thus 879, and the average num-
ber of humans is shown in the plot for the respective range
restriction. For this test, no temporal filtering was used to ad-
just the classification scores. Figure 6(b) shows a sample of
the images of the sequences used. The detections shown are
indicative of the performance of the system (but are, in fact,
based on a system trained without that sequence). Across our
datasets, the system can achieve a 95% Pd at 0.1 FAPF for
people less than 30 m and 85% Pd at 0.1 FAPF for people less
than 40 m. For people out to 50 and 100 m, the system achieves
95% and 90% Pd respectively at 1 FAPF.

As the cross-validation results sample across all of the
datasets being tested, they do not necessarily provide com-
pelling evidence that the system is effective in new, unseen
scenarios. To demonstrate that our system is robust in new
environments, we show the performance on individual se-
quences that have never been used for training. Although less
statistically significant, they are perhaps more indicative of
the performance to be expected of the fielded system. Fig-
ure 7(a) and (b) show the results of the system without tempo-
ral filtering on two sequences held out from the training data
(for which example images with detections are shown in Fig-
ure 7(c) and (d)). The same system was run on both datasets
with no modification. As the plots show, the sequence shown
in Figure 7(a) and (c) is more difficult than Figure 7(b) and (d),
containing more clutter and occlusion. The system achieves
well above 95% Pd at 0.1 FAPF for pedestrians less than 30 m
and 80% Pd for less than 40 m. For a fielded system, we gen-
erally run at an operating point closer to 0.02 FAPF, which
results in 90% Pd for �30 m and 65% Pd for �40 m, and
maintain some degree of persistence of detected objects, prop-
agating them with their predicted velocity for path planning.

The main source of false alarms of our system in these en-
vironments is due to the over segmentation of vehicles. An ex-
ample of a false alarm on the front of a pickup truck is shown
in the lower image of Figure 6(b). The individual distracter ob-
jects, such as barrels, tripods, and sign posts are only occasion-
ally misclassified because they are normally segmented cor-
rectly. The main source of missed detections is due to variabil-
ity of the stereo range data at long range, partial occlusion, and
occasionally due to imprecise localization of the person due to
under or over segmentation. Our system has some robustness
to partial occlusion, but tends to break down after greater than
50% occlusion. The sequence shown in Figure 8 shows several
examples of performance on occluding and overlapping peo-
ple. The people in the near field are detected when they are
unoccluded, or only slightly occluded. They are not detected
when partially occluded either vertically (due to crossing the
other person) or horizontally (due to the posts). Note, how-
ever, that the people are all tracked throughout the sequence
(although with one incorrect association). The people in the
far field are similarly not detected when they are partially oc-
cluded by the vehicles (or too far away), but are detected when
they emerge into the open. The failure to detect partially oc-
cluded people is understandable because we only train a single
classifier with data that does not contain many occluded peo-
ple. An approach to addressing partial occlusion might be to
train multiple classifiers for the different types of occlusion ex-
pected (lower torso, upper torso, left side, etc.). Alternatively,
a parts-based classifier could be used to detect distinct por-
tions of people. However, this approach would likely require
a ground-plane assumption in order to detect the body parts
correctly.

In addition to testing on ground-truthed datasets, the end-
to-end system has been integrated into several systems for
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Fig. 6. (a) The performance resulting from 1,000 trials of 80%/20% split cross-validation tests on 4,396 frames drawn from
various scenarios. (b) Examples of images and detections from the various scenarios, with an example false alarm on the truck in
the bottom image. The yellow boxes are detections, with a green overlay of the segmented person.
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Fig. 7. (a) The performance for the run shown in (c), and (b) the performance for the run shown in (d). The yellow boxes are
detections, with a green overlay of the segmented person� the cyan boxes are missed detections.

live testing. An earlier version of the system was fielded as
part of the RCTA program SafeOps test, as reported by Bodt
(2008). The system described here has been integrated onboard
the test vehicle for an upcoming test, for which results will
be published in the future. The system has also been used to
demonstrate autonomous navigation in a lightly cluttered dy-
namic environment on a small vehicle (with cameras at ap-
proximately 1 m high and with a 12 cm baseline) traveling at
approximately 1 m s�1.

4.2. Urban Datasets

To illustrate that our system is competitive with other state-
of-the-art stereo-based pedestrian detection systems, we also
evaluated our system on datasets published by Ess et al. (2007,
2008). These datasets consist of 640 � 480 resolution color
Bayer tiled imagery, taken at 15 Hz, with a 40 cm baseline
camera pair pointed straight out at a height of approximately
1 m. The scenarios are significantly more complex than the
semi-urban data, with many people in a busy shopping dis-
trict in Zürich, Switzerland, with significant occlusion, clutter,
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Fig. 8. A sequence of frames showing detections (yellow boxes, with green overlay the segmented person) and misses (cyan
boxes) for people under occlusion. The number above the boxes indicates the range, and the number below indicates the track
ID.
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Fig. 9. (a) The performance curves for sequences from Ess et al. (2007, 2008) presented with the same evaluation criteria as
their work. (b) The performance curves for the same sequences when all annotation that have less than 10% stereo coverage are
eliminated, indicating that most of the misses in (a) are due to lack of stereo depth data on the people.

and motion. The annotations include all people whose torso
is partially visible, and include children and partially upright
postures, but not people sitting. To make a direct comparison
to the results published by Ess et al., we use his detection crite-
ria (50% intersection-over-union) and restrict the annotations
used in the same way they do (with height greater than 80 pix-
els for sequence 2 of the 2008 data, and 60 pixels for all other
data). We completely omit sequence 1 of the 2008 data be-
cause we were unable to generate acceptable stereo depth maps
based on the camera models provided. The depth data density
on all other sequences is acceptable, but not as dense as it could
be, and results in reduced performance as discussed later. For
direct comparison, we also train on exactly the same data as
well (sequence 0 of the 2007 data).

The performance curves of our end-to-end system with the
Ess et al. test sequences using exactly the same evaluation cri-
teria are shown in Figure 9(a). Although the performance does
not appear very good (between 0.4 and 0.7 recall at 1 false
positive per frame, and with maximum achievable recalls be-
tween 0.5 and 0.75), it is very similar to the results reported
by Ess et al.. In fact, the results are slightly better at 1 FAPF
on all sequences except sequence 2 of the 2008 data (which
is due to less stereo coverage). Examples of the scenes, along
with stereo and the predicted velocity of certain pedestrians,
are shown in Figures 10 and 11. Note that people are detected
when they are in various poses or stages of walking and while
carrying bags or briefcases. The main cause of the missed de-
tections is simply due to a lack of stereo depth data density
on people who are either too close or occluded. To illustrate
this point, we also show the performance for the sequences
where annotated people must have at least 10% stereo cover-

age (of the pixels defined by the annotated bounding box) in
Figure 9(b). As our system relies on stereo data for both de-
tection and classification, it can never find these people, nor
would it be able to localize them to plan around them in a fully
autonomous mode.

Our system misses detections and produces false positives
in some understandable situations. For instance, it misses most
children (left image of Figure 10), which were not included
in any training data, and detects mannequins in shop win-
dows or reflections of people in windows (right image of Fig-
ure 10). However, the majority of false detections is due to
patchy stereo on flat surfaces such as buildings or cars, which
results in the objects being over-segmented into a human-sized
objects (as seen on the car in the left image of Figure 11).
Many times, this results in false positives high up on build-
ings (as seen in the center image of Figure 11), that could be
removed by only considering people who might enter the street
or be a danger. In other cases, explicitly detecting other objects
such as cars would remove the false detections. Despite not de-
signing for many of these situations, our system is capable of
achieving competitive performance while running at 10 Hz on
the 640� 480 imagery.

5. Conclusion

The results of our stereo-based pedestrian detection system
show it to be effective at detecting people out to a range of
40 m in semi-urban environments. It achieves results compa-
rable with alternative approaches with other sensors, but offers
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Fig. 10. Examples of detections (yellow boxes, with green overlay of segmented people) and misses (cyan boxes) (top row), the
corresponding depth map (middle row) and velocity estimates on the three-dimensional point cloud (bottom row) for sequences
from Ess et al. (2007). The false detection in the sequence 3 example is due to a reflection in the window.

Fig. 11. Examples of detections (yellow boxes, with green overlay of segmented people) and misses (cyan boxes) (top row), the
corresponding depth map (middle row) for sequence 2 from Ess et al. (2008). There are false alarms on the car in the left image
and the bus in the middle image. The misses are generally due to lack of stereo coverage or excessive clutter.
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the potential for long-term scalability to higher spatial reso-
lution, smaller size, and lower cost than other sensors. It also
performs similarly to state-of-the-art results from recent liter-
ature, while running significantly faster.

Our system can be improved in many ways, but we have
identified several specific approaches that we feel would be
most beneficial. In particular, adding appearance and motion
features could substantially improve the detection rates. At
close range, where there are many pixels-on-target, using ap-
pearance features will help to detect people under partial oc-
clusion and in non-upright postures. At long range, using mo-
tion to segment moving objects from the background will help
to increase the detection rate (although one cannot rely on mo-
tion exclusively, since stationary pedestrians are in as much
danger as moving people). All of these techniques will benefit
from increased camera resolution, but doing so will increase
the computational cost. This strongly motivates the study of
methods for efficiently focusing attention of specific areas of
high resolution imagery.
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